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SOME THEORETICAL ASPECTS OF THE LOT PLOT SAMPLING INSPECTION PLAN

e BY

S LINCOLN E. MOSES

Introduction.
Industrial sampling plans for the mcst part are of one of two Lypes.

1. Attributes.plans: Here a sample is taken and each item in the
sample is adjudged defective or nondefective.(for example, is a
rivet long enough, or will a bolt pass through this hole but not
pass through this smaller hole?) If sufficiently few items in the
sample are defective,the lot is accepted since the cvidence in-
dicates a small proportion of defective items in the lot.

2.. Variablec plzns: Here a sample is taken and each itew in the sample
is measured. (The question is, "How long is this rivet?," rather
than "Is it leng enough?") From the mean of the observations
and some measure of product variability, such as the sample stand-
ard deviation, or range, or a known value of the true process
standard deviation, a decision is made as to the fraction of
dafective items in the lot. Making this decision involves the

1 | assumption that the distribution of measucrement in the lot is

normal.
7 ol
iy Variables plans ordinarily require many fewer observations *han attri-
! & butes plans because they exploit the information atout the shape of the
A distribution. On the other hand if the distribution is nct normal this may
i ﬁi vitiate the decisions reached from a variables plan; whereas, the decisions
g ﬁf reached from an atiributes plan are in no way disturbed.
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Both types of sampling plans may be rogarded as alternatives to 100%
inspection. Where it is imperative to assure a very small fracticn defective
remaining in accepted lots, 100% inspection may be used. However, much
experience indicates that 100% inspection is often less than 1C0% effective
- that defective items, though inspected, may not be identified and re-
moved., Since this sort of condition arises largely from monotony and in-
spector fatigue, it is often felt that for large lots a good sampling plan
is a better recourse than 100% inspection. 1n addition 1C0% inspection is
ordinarily much more expensive than sampling inspection.

During recent years there has been widespread use of a third sort of
substitute for 100% inspection. This is the Lot Plot Flan, developed by
Dorian Shainin, which is a sort of modified variables plan., It has a novel
feature bowever; it is intended to have the advantages of a variables plan
without being sensitive to non-normality. In striving to achieve this ob-
jective, much reliance is placed on the appearance cof the samuple histogram
(the sample consists of 50 items). The Lot Plot Plan is specifically pro-
posed as a method for assuring smaller fraction defective in accepted lots.
than can be achieved by 100% inspection - or even multiple 100% inspecticn
(10].

It is tie purpose of this paper to consider theorsiical aspects of

the Lot Pld procedure. ‘tne reader is also referred tc¢ a paper by C. C.

Craig [3].

hr Brief Deseription of Plan.

e : The inspeetor draws a random sample of 50 items from the lot. He
records tlic measuremgcnts in sets of five, at the same time plotting them

! -7 on a convenlently arranged specially prepared form, When all £0 have been
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measured and recorded he has a histogram of from 7 to 16 intervals;/
(which facilitates quick calculation of X) and the data themselves recorded
in consecutive sets of five (which facilitates the calculation of ;5 - the
average of the ranges of the 10 subsamples). At this stage the inspector
has three things:

1. The histogram (the Lot Plot) on which are shown the specification

Lmits,
2. X, the sample mean
3. r, the average range.
fdow the statistics are used in reaching a decision depends upon how

the histogram looks. The histogram may appear to be one of several types
listed by Shainin:

a. Normal

b. Ckewed

c. Multimodal

d. One sided (for concentricity parallelism, etc.)

e. Flat topped

f. Peaked

g. Truncated

h. #ith strays

If the histogram looks normal then the "lot limits"™ are calculated as
ULL = x-1.3r
LLL = x~-1.3r

and the lot is accepted if both lot limits lie inside specification limits,

l7After the first five observations have been drawn the inspector applies a
rule of thumb given him in order to decide whether the interval of
measurement is too coarse or too fine to result in such a number of in-

tervais for the histogram,
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If a lot limit 1ies beyond a specification limit, then the fraction of the
lot lying beyond that limit is estimated (using a convenient chart) from
the normal distribution, taking X for the mean and r for 2.3260, After
the fraction defective is estimated and entered cn the lot plot, the =ntire
sheet is sent to a Salvage Review Board who decides disposition.g/

If instead of‘ iooldng normal bne histograxm looks skewed, the inspector
calculates the two lot limits differently. He considers the mode as the
origin and compur,:—:s(,‘:’U the root-mean-square average of the observations
greater than the mode (including haif of the frequency at the modal cell)
angd sets the upper lot limit at mode + 30&‘U; similarly he constructs the
lower limit at mode—jG'L where 8_1_. is the rooit-mean-square average of the
observations below the modal cell, (including half of the frequency at the
modal cell). If both lot limits lie within the specification limits the
lot is accepted. Otherwise, the rroportion defective at each specification
is estimated as before, but taking tne mode for the mean and the appropriate
one of E—U or gf-L for the standard deviation.

If instead of looking normal the histogram looks multimodai, the in-
spector calculates the lct limits still differently. In this case he
considers the two "outboard modes™ and if there are sufficient cases
beyond them he calculates separatély - ala‘u at the upper one and a'G'L
at the lower one and sets:

ULL = largest mode«*3‘8‘“u

L1l = smallest mode-BG'L

If there are only a few cases lying beyond either or both of the

_g/ It is to be observed that in some plants the sample standard deviation,
s, is calculated and used for an estimate ot the process standard de-
viation. In this case the lot limits are x23s., [1]
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outboard modes, he first draws some addilicnal observations and then com-

putes the lot limits. If one of the lot limits lies beyond a specification

1imit the percent defective there is estimated by taking the relevant one

ch—U and &

L and the appropriate mode as the standard deviation and mean,

respectively, of a normal distribution,

The

other cases listed above carry specific instructions but will

not be sketched here because:

l.

E S k- aa St ] » o

They are cases which arise less frequently in practice than

the three above [4].

Description ol these cases is not essential to an exposition of
the evaluative work being reported on here.

following remarks are in order at this point

If sample items lie outside the lot limits, the lot is not
regarded as "normal", but either as "long tailed" or as ™with
strays."

If a histogram looks normal and lies well within the specification
limits, the inspector may accept without caluculating any
statistics at all.

The inspector never rejects a lot. He refers it (via the
executed Lot Plot form) to the Salvage Review Board (often
interdepartmental in composition)., This board weighs the evi-
dence in the Lot Plot form and economic considerations such as
production line needs, existing inventdries;disassembly costs,
etc,, in arriving at a disposi
vendor, accept, scrap, remove some good items and rework others,
etc.

The apparent vagueness in such phrases as "looks normal® is a
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real and genuine vagueness in the plan as published, In general, objective
criteria {except for (1) above) are not given. It is thus entirely

possible for two inspectors to arrive at different dispositions of the

same lot from the same sample.

Nature of a Fuil Evaluation of the Plan.

It has already been said that the plan is intended to he applicable
regardless of the distribution of the lot. That is, for any kind of lot
- or at least for any kind of lot which might "reasonably" arise in industry
- the plan is intended to give the (essentially) same tight operating
characteristic,

In evaluating the pian it is thus necessary to consider how it works
where the lot may have any cne of various sorts of distributions. Since
only a sample is inspected, a lot which is actually, say, skewed will
sometimes give a histogram which appears to be normal, sometimes skewed,
sometimes flat-topped, scmetimes bimodal, etc. Then after a certain type
of analysis is decided upon (from looking at the histogram) the sample
may give leot limits leading to acceptance, or it may not; and the
probability of accertance presumably should be different for the same
lot depending on what form of analysis is used.

Thus, if f(A 1A e .,Ak) is o given distribution type with parameters
7\1,7\2 ?\k, a full evaluation for this distribution type would
require determining:

Pf(e(jAl, ?\2,-..,Ak). Tue probability that the histogram would

"look like one of typeX".
Lf( A 1,7\2,...7\2100 the probability of acceptance (as a function

of the parameters), given that the histogram looked like one of

type"(=
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It would then be possible to obtain the overall probability of acceptance
for tre distribution type f (as a functicn of the paramcters) by the
= equatiocon.

LA 5o e Ay T 1AL AL, AP KA LA, A
when the summation is overall lot plot "types.™"

There would then remain the question, "Is Lf(;\l’;\2"'°;\k) actually
only a function of p, the fraction defective?" If so, it could be
written as Lf(p).

If this sort of investigation were then done for many different dis-
tribution types, a very compiete account of the plan's properties under
the circumstances for which it was designed would be obtained.

Carrying throagh such a complete study is at best horrific in
principle. In this case it is also actually impossible because of the
fact that the plan gives no objective criteria for concluding that a lot
plot "looks skew", ete,

Necessarily then this paper will give a more modest evaluation than

a complete analysis would provide.

A Counter Example.

The Lot Flot Plan cannot achieve the objective cof giving a tight C. C.

for every distribution. In fact it is easy to show that for certain

kinds of distributions it must behave almost exactly like an attribute
plan calling for 50 observations and rejection if one or more defective
items are found. Consider a lot with the following composition: it

‘,*; contains N iteims whose distribution is centered half way between the two

3 specifications, the standard deviation is so small that the distance
between the specification limits is many standard deviations (such as 10

or 20), and its shape is as nearly normal as is possible for a discrete
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distribution; in addition it contains k "mavericks® - iteme which are

outside the specification limits in any way whatever. Now consider the

operating characteristic. Whenever the sampie of 50 items includes none
of the k mavericks, the Jot Flot will lead to ecceptance, Whenever the

sample contains one or more of the k items the Lot Plot will say "refer

to salvage". The plan will thus behave exactly like the attributes

acceptance plan mentioned above,
A stronger statement can be made, It is impossible to construct

any plan, using 50 observations, which has both of the following pro-

perties:
a, There exist lots of such high quality that the plan is nearly
sure to accept them.,
Y. The plan is materially tighter than a 50-observation attribute
plan for every kind of lot distribution.
A formal statement and proof is as follows:
Any acceptance plan which requires n observations and has the
property that for every N »n and every € > O there exist lots
(of "high quality") such that the probability of acceptance, Ap
exceeds 1-€, also has the property that for any given p there

exist lots with fraction defective greater than p for which

Ap > AA

attribute plan with sample size n and acceptance number zero.

- € wnere A, is the probability of acceptance using an

Proof:

let L be a iot o e N =n such that Ap(L) > 1-€,
Consider the lot L!'(K) formed by adding K defectives to L

K
— > 1
where K is chosen to ensure W™K P
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Then

A_{L') > Prob) Sample consists only of items
e from L and is accepted

= Prob{n observations from L} Ap(L)

>(!~“) a-6) >(¥) -¢ = A, (L1)-€
(N+k) (N+k')
n n
The nature of the counter example deserves some consideration

from the practical point of view. t surely indicates that where a
small fraction of strays constitutes a serious problem, the Lot Plot
Plan cannot afford good protection. On the other hand it leaves open
the question how should it behave in sitvations whers we have normality,

or where the nonnormality is not a matter of strays?

The Use of a 50 Observation Histogram to Detect Nonncrmality.

The most distinctive feature of the plan is the use of the histcgram
to warn the user when the normality assumption is invalid and to cause
him to employ special technigues. 7ihus it is natural to enquire as to the
efficacy of the glan in this respect,

Craig [3] reports the results of some sampling experiments in which he
forcetully faises the question what can one learn about the shape of a
distribution from a histogram based on 50 observatioas? Other sampling
experiments have been done [4] again casting severe doubt on the
possibility of greatly profiting from a 50-observation histogram. Here
a more theoretical view will be taken.

Because the Plan is very vague as to what sorts of loi plots ars to
be regarded as skew, what sorts as normal, what sorts as bimodal, etc.,
it is haraly possible to answer the guestion "How reliably will the Plan

pretect against nonnormality?" Insteaa we will ask how well can any

it L TR i et ST AT rae e - . e - s
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procedure using 50 observations in grouped trequencies identity ncon-normality?

Since it is the aim of the Plan to give protection against any kind
of departure from non-normality it is fair to focus our attention on
"omnibus" or "shotgun" tests, We know of one such test, whose power we
can compute, and which has the encouraging property of being a likelihocd
ratio test {for grouped frequencies against the class of all alternatives).
This test is the;K - test. Accordingly we computed the power of the ?(2
test against various non-normal alternatives. See Figures I, II, III, IV.
This was done in the following way. The null hypothesis specified a unit
normal distribution; the cells for the 7(2 test were those given by the
deciles of the unit normal {this should give a more sensitive 10-cell test
than equal length cells according to results of Mann and Wald [6]).
Under the null hypothesis the expected cell frequencies are all 5. For
various competing distributions having mean zero and unit variance the
cell expectatiois were cvaluated. From these the power of the 10-cell
?(2 test could be evaluated using methods given by Patnaik (7]. The
results are shown in table 1.

Another approach to the problem was also taken. The same competitors

and cell intervals were iused but the test was allowed in each case to be

tailor made for maximum power against the alternative, This is accomplished

by using the Neyman-Pearson criterion for testing a simple hypothesis against

a simple alternative. The hypothesis is that the chosen intervals have

the probabilities {P&
4

is that the chosen intervals have the probabilities {pij specified by the

particular alternative distribution, The Neyman-Fearson criterion then

gives the optimum test of the hypothesis against the alternative; optimum

-

z specified by the ncrmal distribution; the alterraative

SEARSER AL B
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in the sense that no more sensitive test can possibly be constructed.

Let the observed frequencies be
n, i=1,...10,
The Neyman-Pearson test is to reject for sufficiently small values of

3 10 . .

mﬂ% bR

G i
i=1 i=1

Or if we define w = log -7 we reject for sufficiently large values of

10

S eyw

i=1

Since the ng have a symmetric multinomial distribution under the null
hypothesis we should expect the distributicn of the weightea sum to
be fairly well approximated by the normal distributicn with

mean = 5OZ_wipi

3 2 2
variance 5OZwi p; - 50(£.wipi)

Thus the test with significance level O becomes, Reject if:

iniwi > 5'[!1*2(1-0()‘/52"12 - %(Z")z

i=1

(1) by:

L 2{(€)

e = = o H U2 dt
W,

Under the alternative hypothesis, gp{} , the statistic Z n.w, will have
- i=]

when we define 2z

2/ The power of this test for any given significance level would necessarily
exceed that of the Lot Plot test of normality if the Lot Plot used the
same choice of cell intervals.

P L gt =



r_hnﬁ-—»-._

7/
mean = SOXwip:.L , and

7]
variance = Sozpi’wi“ . 50(}.?p£wi)2

again using a normal approximation, ¢he power of the test which is:

{]
P? Wiy > 55“1”2(1-‘() 5(2 '”12-.(_—2121 )zjrlpiﬁ

may be approximated as:

(10 /5(Sw,*- %_;gf)

P{z N ~50%_w, (p{-p; )*z

/ 50§y, 2-50(E Fyw, )2

where z has a unit normal distribution.

The power of this test against the same alternative distributions is
shown in table 2. Admittedly study of the values in tables 1 and 2
does not tell us directL§ how the Lot Plot "test of normality" will be-
have for these distributions, However, both of the tests considered do
enjoy certain optimum properties, and there is every reason to suppose
that the combination of an inspector and a Lot Plot diagram will yield a
test of normality less sensitive than the second of these and probably
less sensitive than either. If this be granted then, from a study of
either table 1 or 2 we reach two conclusions.

1. The Lot Plot Plan, relying am a 50-cbservation histogram to
identify non-normality, cannot be relied upon to protect from
distributions as nearly normal as these,

2. Distributions as nearly normal as these will very often be re-
garded as normal, and it is werthwhile to see what sorts of

th

1i€h,

decisions will be made when tue ncrmal analysis is applied io
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Offects of using the "Normal Analysis."

A. General remarks.

We now concern ourselves with examining the results of an acceptance

procedure which accepts if both

X+ 3 and x - 3

gl’il
%"'ﬂ

lie between the specification limits, and which otherwisc rejects. Since

the Lot Plot is sometimes used with the sample standard deviation rather

than r/d2 for the estimate of @, the problem will also be investigated

for that case. The behaviour of these procedures will be examined fcr the
normal distribution and a few members of four types of non-normal distri-
butions (which first appeared in the last section). These four types all
share the property that the normal distribution is a limiting case. As the
parameter in either the ¢+ or[" distributinn increases, the shape of the
distribution increasingly resembles the normal; similarly, as the two
parameters of the symmetric Beta distribution increase it goes to the
normal. Finally, as the parameters /‘(1 and )e(z tend to zero in the mixed

normal with Criz = <5'22, the distribution tends to the normal. In

are "bell-shaped", and all of them except for the Gamma distributions

i
cr
s
ct

are symmetric, We have already seen that if indeed tne distiri

' -

=

the lot is one of these types there is a great probability that it ei
be subjected to the normal analysis.

I e = SR X
In a certain sense &/ it can be said that the plan ¥aims® Lo accept

57*71f x ¥ 3s be used, as the sample size becomes large the probability
tends to one that the lot will be accepted or rejected as A B0
both lie (strictly) within the specification or one at least lies
(strictly) outside.

[y
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if the pcints/{k* Bo“andM- 3g both lie within the specifications, and
otherwise to reject. Now it is clear that "3-sigma" criteria mean very
different things for different distributions. Table 3 displays the
probability lying beyond AL+ 3¢ and A-— 3@ for each of several non-normal
distributions. From perusal of these values we would guess that as

x83s or J_cibz—z were successful in approximatingM t36‘ , So also would

lots of identical quality tend to be accepted with widely different pro-

babilities, depending upon the shape of the distribution,

b. The case of normally cistributed product.

Where the product is nocrmeally distributed the joint distribution
of X, s is of course exactly known and numerical integraticn enables :he
probability of acceptance to be evaluated for any relation ofaq and &
to the specification limits U and L. As is well known [(11], the probability
depends not only on p, the fraction defective, but on how the fraction
defective is divided; if ®/2 lies beyond each specification, then the
probability of acceptance is greater than if all of it. lies beyond one
specification. (Variables plans exist for which the 0.C. effectively
depends on p alone [2,9]; the Lot Plot Plan is inferior to them in this
regard). Figure V shows the 0.C. as a function of p for various relations
ofMto the specification limits..

If X and r be used, then the exact distribution of T is not available.
However, an approximation due to Patnaik [8] is known to be excellent.
Further X and T are independently distribnted in the normal case. Thus
the 0.C. can be obtained by numerical integration,

In either of the above cases another method of approximately evaluating
the 0 L. is available. We know that x is exactly normally distributed; r,

being the averagc of ten independent ranges, may be considered approximately
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normally distributed, and = the sample standard deviation is asymptotically
normally distributed. Thus we may consider taking x+3s and X-3s to have

a bivariate ncrmal distribution. Similarly we may consider taking xxl.3Tr
to have a bivariate normal distribution. Table 4 shows the values of p

for which the probability of acceptance (from normal lots) equals .95,

.90, .10, .05 as calculated from the bivariate normal approximation, and

by the exact method for s, by Patnaik's aprroximation for r. The agreement

is seen to be good.

c. Methods used for case of non-normal distributions.

When product is not normally distributed the exact distributicns
of x, s and r are all unknown for the distributions considered here. This
means that either approximation to these distributions or empirical
sampling must be used to evaluate the probability that the lot limits
{using either s or r) will lie inside the specification limits. The
course chosen in this investigation was to take the lot limits as having
bivariate normal distribution. It has already been seen that this approxi-

ation is excellent for the normal, and it can fairly be hoped that it
will not lead to grossly misleading results for these distributions which
are "nearly" normal,

To apply the bivariate normal approximation it is necessary to obtain
its parameters. The mean and variance of x are of coursezq. and ¢5§, when
M andO"2 are the mean and variance respectively of the distribution
postulated for the lot. The mean and variance of r5, the range of {ive
observations,were obtained by numerical evaluation on the CPC of the

integral expressions (given in [5, p.233]) which are respectively:

~r
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E(r,) =)( [1-(1-F(u))’(F(u))® Jdu

5(x)? = f ({[F(w - 0T - 0 FW)I - (F@)° 1jdudv
ux

In these expressions F(u) is the cumulative distribution evaluated at u.
Values of E( 6_-2) and & —2) for distributions are given in table 5. It
is interesting tc observe how stable is the ratio E( ;_2) from distribution
to distribution.

In the case of symmetric distributions the correlation between the
range and the sample mean is zero since they are; after translation, even
and odd functions, respectively. For the Gamma distributions the co-

variance between the mean and range of five observations was obtained by

numerical evaluation of the following integral expression:

E(’-‘srs) _ (20p;}2i~%(2p'1)~' — (60p*+72) '( F(x) (1-F(x) )xt dx
2 pip! “o

when the Gamma density and cumulative function are, respectively:

£ix) = 3, e %P
Pe
x
and F(x) = 3+ f “UePat,
pt

In terms of these parameters of the joint distribution of x5 and rs,

bivariate normal approximation to the jeint distribution of the lot

limits is to take:

Xen * 1.35 - A - 1.3E(r5)

- 20 e and
oo
j + 1.69 Ig + 2—ig cov(x )
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- l.3r5 =A ¢ 1.3E(r5)

% .
v = X

‘ 2 5_2’.
o T% _ 2.6
\/so + 169 3 - S5 cowlir 5>

normal distribution with means zero, variances one,

as having a bivariate

and correlatiocn coefficient:

2
g[ - 1,69 0;;
10

\41

\ 4 F A4
O ....
\/(5 + 1.69 5 / Sgeov x5r5)
A1l the expressions under the square root signs simplify somewhat for the
. symmetric distributions.
A similar approximation was applied to the problem when the lot limits are

taken as x+3s and x-3s. Application of standard methods {5, ch.9] yields

the following results:
) E(x) = A
E(s) =G (1+
S -
. A3

cov(x,s) =
2x0

var x =62/N
4
; var o = M’——_—Z.
4(n-1)@
In terms of these parameters (approximate in the cases involving s) the
: = bivariate normal approximation to the joint distribution of the lot limits
T is to take:
¥ T = 1
Xy * 35 = M- 307(1 + -
i ] il ut = 50 l W 16006—-2;)

%i“ r-z O
: J% 3 '_‘ih_—iil_ . A3
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2 4 l .l‘
or 2 50 73 M 3070 * g - et

2 3.4
+ y - =
JE s S

as having a bivariate normal distribution with means zero and variances one,

and correlation coefficient:

2
- 9 Mo
fj e 50 hoh9 g+

50 4 49 &+ / 50
Again there is simplification for the symmetric distributions since the

third central moment, /l(3 is then zero.

d. Results for non-normal distributions.

The distribution theory whose development has just been sketched,
enables one to evaluate the probability that the lot limits will lie
between any given lower and upper specification limits, L and U respectively.
Since for any given distribution the fraction defective p is defined as the
probability lying outside the interval L to U we can find both the value of
p and the probability of acceptance associated with any pair of specification
limits,

In the normal case it was pointed out that the probability of acceptance
is not a function of p alone, but also of how p, that fraction defective, is
divided between the two ends of the distribution. In general we shculd
expect this condition toc obtain for other distributions as well. Therefore,
in the case of each of the symmetric¢ non-normal distributions taken as

illustrative examples in this study two of the infinitely many divisions
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of r were considered: equal division of p between the two ends, and all at
one end. In the case of the non-symmetric distributions there were three
cases investigated: equal division of p, all at the left end, all at the
right end.
Table 6 presents the results obtained. The values of p leading to
probability of acceptance {if the "normal analysis™ is always used)
equal .9 and ,1 are shown there for several distributions, for symmetric
and one-sided diwvision of p, and for both "range" cnd "standard deviaticn"
lot limits.,
Study of the figures in this table irdicates several things:
Use of range or standard deviation leads to nearly identical
results,
The plan is extremely "tight" for the nommal distribution.
The plan 1s far tighter for some others of these distributions (for
example the B(3,3)distribution lies entirely between U and I (p=0)
and still the probability of acceptance is less than .1).
The plah is very much less tight for some distributions (such as the
t or the |’ with all the fraction defective in the upper tail).
Skewness results in a violently strong dependence of L{p) upon the division
of the fraction defective between the tails,
in considering the probability that the lot limits lie between the
specification limits as a functicn of p we find a great diversity, even
restricting curselves to the symmetric distributions. Instead we may

examine the probability that the lot limits lie between the specification

5/
That is, the probability that the lot limits lie between U and L.
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limits as a function of how wide apart they are (in teims of the lot
standard deviation). This is done in table 7. Here we see a rather
surprising degree of uniformity. All these 0,C.'s could easily be plotted

on the same chart; in fact their 50% pcints all lie betwee .95 %E%;and

1=
U

This observation together with a remark made much earlier helps to make

1.00

sense of the behavior of the plan, We have just seen that the probability
of obtaining iot limits between the specificaticn limits depends upon the

distance between the specification limits %:L in wmuch the same way for

o
all these "nearly normal" distributions. On the other hand, we earlier
saw that J #3 ¢ limits have greatly cdifferent values of p asscciated with
them. From these two facts we could predict what was shown in table &,

that the behavior of the plan in terms of the proportiocn defective depends

strongly upon the type of dis*ribution,

e. £Estimation.
When the Lot Flot looks normal, but the lot limits do not both lie
between the specification limits the lot is referred to salvage with an

estimate of the fraction defective beyond each limit. These extimates are:

& 2 = S
- n o
$U=—l-_— et/zdtmdSLf-_fa o2 g
V2T - J 2TTJ
JU=x
~ _ oo
g _
where%ﬁs either s or r/d2.
The question naturally arises, what properties have these estimates?
The answer would seem to ba that for distributians, such as the t, with

much probability in the tails, the estimates above will tend to be under-

estimates, and for distributions with little in the taiis (such as the Beta)

Wediisar



~

e
|
c

i

-21-

the estimabtes will tend f.o be cverestimates, For example we see from
table 6 that if the distribution of product is B(3,3) with actually zero
fraction defective we may still accept with probability less than .1;

the case shown in the table is for the specification limits at the ends

of the (finite) range of the distribution. In such a case whenever we

re ject we estimate some positive value for SU or for ﬁL’ of for both;
whenever the lot is accepted the estimate for both is zero. Clearly

the expected value of §b+Si exceeds zero, the actual fracti:nn defective,
Similar reasoning confirms the statement made for long tailed distributions
such as the t. The simple fact would seem to be that though one can
estimate M and 0 with fair success for many distributions, since identical
pairs of values for M and & denote greatly different probabilities in the
tails for diffcrent distributions, we camnnot hope te estimate these
probabilities with uniform success by always pretending the distribution

is normal.

Non Normal analysis:

Although, as we have seen, for non-normel distributions of our illus-
trative types the "normal analysis" will often - cor indeed, usuaily - be
used, it is profitable to investigate what will be the effects of another
type of analysis when used.

In 211, about 11 different sorts of analysis are distinguished in the

3

plan. Only two of these, besides the normal analysis, receive attention

>

in this study. These are the "skew"and multimodal cases. Since the special
procedures in bhoth these cases depend upon the mede it is very difficult

to make any study of sample behavior; little if anything is known about the
sampling distribution of the mode. However, we can again "lcok at the

problem in the parameters.®™ If Lhe inspector knew the lot was skewed(or
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multimndal) knew the mode(s), and knew the true values of O’U and & L
then how would lots of various quality fare under the rule(s) which set
the lot limits at

mode - 3¢, and mode + 367y

for skewed lots, or

smallest mode - 3cri and largest mode + 30?]

for multimedal lots? Table 8 shows that the rule - if the paraweters

were known would lead to very different results depending upon what distri-
bution, or which end of the distribution, is being considered.

It can certainly be said that there are grounds for doubting that the
special rules for these tweo cases, at least; will go far toward making

the operating characteristics of the plan independent of the distribution

s of the lot.
|
f . Summary and discussion.

The results can be summarized as follows:

1. Tne lot plot plan fails - as must any 50-observation plan - in
its cbjective of being uniformly tight regardless of lot distri-
bution. '

2. The 50 observation histogram will ususlly judge to be normal
lots which in fact have fraction in their tails appreciablr larger,
or appreciably smaller than has the aormai.

3. The probability that lot limits will lie between the specification

3 limits depends upon the distance (in standard deviation units)

- between the specification limits in a way which is not strongly

H dependent upon the lot distribution; but (almost as a result)

the probability of acceptance depends very differently upon the

e e o
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fraction defective for different distributions. {(That value of the
fraction defective for which the probability of acceptance is .9
varies for cases considered between O (for B(3,3)) and .006 (for Lg);
fractions defective with 10% probability of acceptance range from

O (for B(3,2)) to .045 (for attributes plan n=50 c=0).

4. The procedures for estimating fraction defective will lead to sys-
tematic overestimatcs for some disiributions, systematic under-
estimates for others,

5. The procedure for dealing with non-normal distribution are question-

able

Since many of these conclusions apply entirely or in sore degree to any
variables plan it is fair to ask now does the lot rlot ;lin comrare with
other variables plans?

It is clear that when all lots are normal, existing plans are superior
for several reasons. The loiL plot procedure will unfortunately from time
to time lead to treating a sample as camning from some other kind of distri-
bution -~ say bimodal; existing variables plans will routinely treat all
samples by those methods which are for the normal distribution the optimum
ones. Further, plans which give one probability of acceptance for each
fraction defective regardless of how it is divided between the two ends of
the distribution are preferable on those grounds alone.

If lots are not normal then either lot plot or other existing variables
plans may behave in strange ways. ihnen the user requires "iron-~clad pro-
tection" regardless of the lot distribution an attributes plan is needed.

Finally, there is a great inflexibility in _pproaching every acceptance
sampling problem with the same decision procedure - "Take 50 observations

at random, and.... ." Different problems may legitimately call for different

e Ao e
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procedures. This option is not a part oi thz Lot Plot Tlan as it is of
Mil Standard 1C5a, or NavOrd 80 or other stanrdard plans which give choice
of AQL and sample size.

Despite the various shortcomings of the plan which have received
emphasis here, it has undoubtedly been successful in many installations.
‘Nhat features of the plan may have contributed to its success? There is
no cdoubt that the plan has a very definite psychological appeal arising
from literally "seeing a picture" of the sample. The provision for always
taking the same size sample is administratively (and psychologically) con-
venient, however inadequate it may be from some points of view,

Tf lots are usually normal and the user actualiy needs a very tight

rlan it is not a bad approximation to existing good untnown staadard devi-

ation plans, and the usual benefits of wcll chosen variables plans will
largely accrue to the Lot Plot user under these circumstances. In cases
of gross blmoaality, for example, the histogram will give definitely useful
information about the process which generated the lot.

Finally, the provision that though an inspector may accept the lot
it requires the salvage review board to dispose of cns in any other way
should have important administrative advantages in many settings: economic
factors will tend to be systematically weighed at the time of disposition
of the lot; if the salvage review board contains representation from the
departments which (in addition to inspection) are coiicerned, then, fewer

dispositions of lots should result in difficulties such as production

flow problems.

R - N ——— — Cepintm
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Power of;(}‘test against various non-normal alternatives.

Table 1.

Levcl of significance
Distribution .05 .25
ts .097 .358
. tg .062 .288
tiq .053 .260
@(3,3) .062 .284
$(10,10) .051 .253
PG .210 w533
r(e) .097 .357
[V6@s) .072 .307
M (351,255,-3) 050 .250
MN(331,151,-1) .06k .288
WG51,155 2 .219 546

® 2 2

density function is

PSR T T

T2

PN

~lx- Hy) ~(x-p)°
1 262 1 262
p————— e 1 e 2

v »
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Table 2.
Power of Neyman-Pearscn Test of

Normality against Various Alternatives,

N Level of significance
Distribution .05 _ .25
te .310 .689
tg .153 .483
tys .098 .376
B (3,3) .160 489
(10,10) .075 319
ra) .605 .899
, " (e) .312 .685
7 (15) .210 565

1. .1 1,

. MN(351,15%,-2) .058 .273
‘ ¥N 13;1,1;1,-1) .167 .505
MN(%;I,I ;%, -%) .627 512

P Y L H b i it cpl N v o




Table 3.

Probability lying beyond (M -3g~, M +367) for variocus distributions.

Distribution Probability
i Normal .0027
t .0117
tg .0085
ty3 .0062
®3,3) 0.
p(lO,lO) .00CS
{ 0. below
‘_‘(3) { -0103 above
0. below
(8 { .0071 above
{ 0000 below
" (15) .0054 above
MN(%;I,I;%,-%) .0022
LiN(%;l;l;l,—l) .0006
MN (351,153, 2) .0000
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Values of E(Bé') and & (_oi_) for various distribubtions.

r r
ey Ts te
. Distribution E(o_) o (6)

tg 2.24775 1.08931

tg 2.29378 0.98788

tyg 2.31067 0.93279

* oo 2:32593 0.86409

(1,1) 2.30940 .61721

(3,3) 2.32105 79568
(10,10} 2.33120 .82743

(B (0, ) 2.32593 L8609

rae) 2.25928 .96704

i (8) 2.25588 .91.209
r(@as) 2.30895 .86157

P () 2.32593 .86409

1

lm(-é;l,l;%,-—%) 2.31450 6805k
mm(l;l,l;l,-l) 2.33028 77979
W G51,155,73) 2.32751 85529
Normal 2.32593 .864L09
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Tavle 8.

I rotability above Lppor mode + 30—U

and below Lower mode ~ BU‘Lfor various distributions.

Distribution Frobability above  Probability below

1 3) .0050 0.

TG .0036 .0C0T5

{(e) .0030 .C0023
W (3; 1,1;%,%) .00067 .00067

-x‘}.m(%;l,l;!.{ ,—rl) is unimodal for“ & A



1 dnbiy

a2 e

st

L ¥
o¢yr o241 o4 ud o-9 o29-v o¢-v 0 L i,
] ] | | ok
: _ [ -\ >
! N o | o 1
N ’ 5 7
=1 A e
M. |
N
A)
i : H !
M i q/ 253 .
| y i ¢
L 1
H A H rA .
] 1 -
| g T
_ \ T Fl
. TN
A
|
-] ] :
€ m.
. !
q ] B
14
H
13U i
A ?
__ D
o _h
510 _
.
1
g
!
! i
1 o
|
. : ; o s [ ]
- S v 3 o R T iR _ _
: {
o g e s : i i Kot e 42 “ O i
-
1



IT 9081y

<

Ot o471 o 41 947 q o-1 £ o¢-1
Sty ol # _\ -
™ _ Az \\W \ =
| s S
N } 4
N b4y
N 2] A
— y’ t
, ! {
ﬁl I
[} W1
Y /
| [
& \ .
L VY
¥ K =~
N\ A 1
\ /. !
X 4
A 1
’ 14
\ I
A ‘ .
Ay A
\ FiFi
A
\ r. N
.\ 4 \ U
A 4
| SAY
Yy 17
i ]
A a 7
4 N
am N TP
BRI | 1




. h@...i

o0

o+

o7

ar anbiy

/il

- Ll

-

=

——

)

-

:"'ﬁ-

B J

e

S———

t
A

AT T T T A o s



AT 94ndi4

.'In

B |

/Tl
/
\

A

v d

..Tl[

1

Vala

P4
BL 3

R

Q2

B e



e FAVI IS

12410) r[e} 00 800 ¢ 300 00 <O 0
R .
A Pty I”!l 'l-!lu.“ "
Pl ™) T~
! I~ N~ -
i & I -
I | -3
™~ 3 I.N.
~ N
LUBENL
A NEAN
NEA®
1 N\
A'
\ N rlf v.
N
KEAY (d)7
-—
Ry
LA &
A
= 1] TN
~ L]
T - 1 '
| L
H ] 1
4RS! . : \Heg
-Jw% H 3# L i —T \lt
1] BB 11t
SHAIGE T APl 1o X
N P11 | “ .
! EMELaGLAREE ; s
[ | ML T 1 o'}

< GNV N S3IONVN3I0L 3IHL 0L 07 40
SNOILYI3Y SNOINVA 804 ‘TVWHON 31 SV Q31v3I¥L 34V HOIHM SNOILNSINLSIA
IWWHON WONS S107 H03 NVd 107d 107 JO SOILSINILIoVEVHD ONILvY3d0



P ——

R e PR T p—

References

{1} ashley, R. L., V'Lodification of the lot plot method of acceptance

sampling,” Industrial Quality Control, Vol. VIII, p;. 20-29, 1952,

)

{2] Bowker, A. H. and Goode, H., Sampling Inspection by Variasbles
McGraw-Hill, New York, 1952.
(3] Craig, C. C., "Some remarks concerning the Lot Plot Plari," Industrial

Quality Control, Vol. X, pp. 41-48, 1953.

[4] Ireson, W. G., "Some practical aspects of the lot plot sampling acceptance
plan," Applied Mathematlics and Statistics Laboratory, Stanford Uni-
versity Contract Nécnr-25126, Technical Report No. 19, 1954,

(5] Kendall, M. G., The Advanced Theory of Statistics, Voi. I, Griffin,

London, 1947.

[6] Vann, H. B. and Wald, A., "On the choice of the number of intervals

k4

: S s . 7<2
in Uhe applicatlivia cf the s test,” Amnals ¢

" Yath, Stat., vol., 13,

pp. 306-317.

[7) Patnaik, P. B., "Ths non-cenvraljx Z and F-distributions and their
applications," Biometrika, Vol. 36, pp202-232, 1949,

(8] Patnaik, P. B., "The use of mean range as an estimator of variance in
statistical tests ," Biometrika, vol. 37, pp. 78-87, 1950.

[9] Resnikoff, G. YA new two sided acceptance region ior sampling by
variables," Applied mathematics and Stutistics Laboratory, Stanford
University, Contract Néonr-25126, Technical Report, No. &, 1952.

{10] Shainin, Dorain, "The Hamilton Standard lot plot method of acceptance

sampling by variables,” Iandustrial GQuality Control, Vol. VII,

pp. 15-34, 1950.
[11] Wallis, W. A., "Use of variables in acceptance inspection for percent

defective," Selected Techniaues for Statistical Analysis, McGraw-

Hill, New York, 1947.



STANFORD UNIVERSITY
Technical Reports Distributicn Last
Contract Néonr 25126

ASTIA, Westerr Regional Office Chief of Navali Research

5504 Hoilywcod Blvd. Office of Maval Research

Los Angeles 28, California 2 Washington 25, D.C.
Attn: Code L32

Armed Services Technical Infor- (Mathematics Branch) 1

mation Agency

Documents Service Center

Knott Building

Dayton 2, Ohio )

Planning Research Division
Deputy Chuefl of Staff
Comptrcller U, S. Air Force
The Perntapgcn

Asst. Chie® of Staff, G-L Washington 25, D.C. 1
United States Army
Procurement Division
Standards Branch

Chief ¢f Naval Researzh
Office of Naval Research

e

Washingten 25, D.C, 15 Washington 25, D.C.
Attn: Code L33
Chief, Bureau of Aercnautics (Statistics Branch) 1
Attn: Quality Control Division
Depertment of the Navy Chief of Ordnance
Washington 25, D.C. 2 United States Army
Research and Develiomment Division
Chief, Bureau of Ordnance QCC Washingtcn 25, D.C.
Vepartment of the Navy Attn: Erig. General L. E. Simon 1
Quality Control Divisicu Nr. Charies Bicking 1
Washington 25, D.C, 1
Commander
Chiief, Bureau of Ordnance QCD U. S, Navzl Ordnance Test Station
Department of the Navy Inyokerr., China Lake, Calif. il
Qualiity Control Diwvision
Washington 25, D.C. 1 Commanding General
Armyv Chemical Center
Chief, Bureau of Ordnance QC5 Quality Assurance Branch
Department of the Navy Ldgewoud, Maryland 2
Quality Contrcl Division
Washington 25, D.C, 2 Cermanding Officer
U. S, Naval Powder Factory
Chief, Bureau of Ships Attrn: F, Frichman,K R & D
Asst. Chief for Research and Indianhcad, Md. 1
Developnent
Department »f the Navy Commanding Officer
Washingten 25, D.C. 2 Ballistics Research lab,
U. S. Proving Grounds
Chief, Statistical Engineering Aberde=n, Maryland
Laboratory Atine Mr-. R. !l. Kent )
National Burean of Standards
Washington 25, D.C, i Commanding Officer
Office of WNaval Research
Branch Office
1000 Geary Street -
San Franzisco 9, Californis 1
Attn: Dr. J. D. VWilkes 1



Commanding CIificer
ffice of Naval Research
Branch Office
Navy Ne. 100
Fleet Post Office
New York, N.Y,.

Director of Research
Operations Research Office
U. S. Army

Fort McNair

VWashington 25, D.C.

Director, Naval Rcsearch Lab.

Washington 25, D.C.

Attne Technical Information

Officer

Commanding Officer

Signal Corps Supply Agency

225 South 18th St.
Philadelphia 3, Pa.

Attn: Chief, Quality Control

Branch, SIGSU-H6d

Inspecticn Engineering

Division

Commanding General

New York Quartermaster
Procurement Agency

Inspection Division

111 East 16th St,

New York, N.Y.

Dr. Clifford J. Maloney
Chief, Statistics Branch

Chemical Corps Biological Iabs.

Physical Sciences Division

Camp Detrick, Maryland

Commanding Officer

9926 Technical Service Unit

Armed Services lMedical
Procurement Agency

Inspection Division

8ly Sands Strest

Brooklyn, N.¥Y,

n

rn

[

i

Chief, Inspection Divisisn

Office of Standardization

Defense Bupply Management Agency
The FPentagon

Washingtcn 28, D.C. 2

Commanding Officer

Central Air Procureument District
Test Warren Ave, and Lonyo Blvd,
Detroit 32, Michigan

Attn: Director, Quality Control 1

Commanding General

Air Materiel Command

Quality Control Division MCPLXP
Wright-Patterson Air Force Base
Dayton, Ohio 15

Director of Research & Development
AFDRD-RE-3 -
Washington 25, D, C. 1

Chief, Statistical Engineering
Laboratory

National Bureau of Standards

Washington 25, D. C. 1

Chief of Naval Materiel

Code M553

Department of the Navy
Vashington 25, D. C. 1

Director

Office of Naval Research
Branch Cffice

8LL North Rush St.

Chicago 11, Iilinois

'.J

Director

Office of Naval Research

Branch Office

3Lé Broadway

New York 13, N. Y, 1

Director
ffice ot Naval Recearch
Rranch Office
1030 E. Green St.
Pasadena 1, California 1



e

(=
b
'—l

Chairman Ios Angeles Bngineerineg Field
; S

Research & Development Board Office
The Pentagon Air Research and Development
Washington 25, D. C. 2 Cormand
5504 Hollywood Blwd
Assistant Chief of Staff, G-L Los Angeles 28, Calitornia
fcr Research & Development Attn: Mr, Chester Pierce 1
U. S. Army
Washington 25, D. C. L Frankford Arsenal
VT Fuze Department
Chief of Naval Operation Inspection Division
Operations Bvaluation Group-OP3L2E Philadelphia 37, Pa,
The Pentagon Attn: ORDEA-VK 2
Washington 25, D. C. 1
Trankford Arsenal
Commandins General : Artillery Ammunition Nept.
Air Proving Ground Irspection Engineering Division
Eglin Air Force Rase Philadelphia 37, Pa. 1
Eglin, Florida 1
J. S. Naval Ordnance Plant
Commander Department of the Havy
U. S. Naval Proving Ground Indianapolis 18, Indiara a
Dahlgren, Virginia 1
Dr. Paul R. Mider
Office of Naval Dzzearch Chief, Mathematical Statistics Group
Logistics Branch Flight Research Laboratory
Code L36 Wripht Air Development Center
T-~3 Building Wright-Patterson Air Force Base
Washington, D. C. L Nayton, Chio 1
logistics Research Project Mr. T. M. Vining
George iasnington University Chief, Test Projects Branch
707 22nd Street, N, W, Products Division
Washington 7, D. C. 1 Chemical Corps Engincering Agency
Army Chenical Center
Asst. for Operations Analysis Maryland 1
iicadguarters, U. S. Air Force
Washington 25, D, C. 3 Commanding General
Ordnance Ammuniticn Center
Ames Aeronautical Iaboratory Joliet, Illinois
Moffett Field, California Attns ORDLY-I-V 3
Attn: Technical Librarian 1
Chief, Procurement Maintenance
N.A.C.A. Bngineering Division
1724 F Stieet, 2.W. Fort Monmouth, New Jersey
Wiashington 25, L. C. Attns Procurement Data Branch
Attns Chief, Office of SIGEL~PMP-1 H

Aeronautical Intelligence 1



e m———ne

iv

Northeastern Air Procurcient District
Attn: NEQC
14 Court Square

Doston &, Massachusetts 1

Central Air Procurement District
Attrs CEQC

W. Warren Ave., & Ionyo Blwd
Detroit 32, Michigan 1

Yestern Air Procurement District
Attn: WEQC

155 W. Washington Blvd.

P. 0. Box 384G, Terminal Annex
Los Angeles 54, Galiforuia 1

Mideentral Air Procurement District
Attn: KIQC

165 North Canal Street

Chicago €, Illinuis 1

Southern Air Procurement District
Attn: 30QC

3305 Winthrop

P. 0. Box 9038

Fort Worth 7, Texas 1

Commander

Middletown Air Materiel Area
Attn: MARQC

Olmsted Air Force Base
Middletown, Penna. 1

U. S. Naval Ordnance Test Station
125 Scuth Grand Ave.

Ma:l 3tation Sk

Pasadena, California 1

Commanding General

Marine Corps Depot of Supplies
116D Scuth Broad Street
Pniladelphia L6, Pa. T

Naval Inspector of Ordnance

50 W. Main Street

Rochester L, N. Y.

Attn: Mr. Wollman A

Chief, Thermicnics Branch

Evans Signal lLaboratoery

Belmar, Wew Jersey

Attin., Mr. Ross Kilgore 1

Test and Evaluation Laboratory

U. 8. N, Underwater Ordnance
Station

Newport, Rhode Island 1

Q. E. Laboratory
U. S, Naval Ammunition Depot
Crane, Indiana it

Commanding Officer

Rock Island Arsenal

Rock Island, Illinois

Attn: Engineering Officer 1

Scrantor. Ordnance Plant,
156 Cedar Avenue
Scranton, Pa.
Attn: Mr, farl D. Larson
Chief Inspeclor 1l

Office of Technical Services
Department of Commerce
Washington 25, D. C, 1

Captain Burdette T. Person

Chief, Quality Control Branch
Central Air Procurement District
1279 W, Third St.

Cleveland 13, Ohio 2

Air Force Plant Representative Office
Central Air Procurement District
Ceneral Electric Company

Lockland 15, Ohio 1

BAND Corrporation
1500 Fourth St.
Santa Monica, California 1

Statistical laboratory
Nepartment of Mathemetics
University of California

Berkeley 4, California 1

Kimberly Corporation
8L76 Warner Drive
Culver Jity, California
Attn: Miss Lucille M. Leis
Office Manager 1



e
|

Dr. Adam Abruzzi

Dapt. of Economics of Engineering

Stevens Tnst. of Technclogy
Hoboken, New Jersey

Prof. Stephen G. Allen

1

School of Business Administration

University of Minnesota
Minneapolis, Minn.

Prof. T. VWi, Anderson
Dept. of Statistics

Columbia University

New York 27, N. Y.

Prot's Fred C. Andrews
¥athematics Department
University oi Nebraska
Lincoln 8, Nebraska

Prcf. Rohert Bechhafer

Dept. of Mechanical Engineering

Cornell University
Tthaca, New York

Frof, Maurice H., Bzlz
University cf kelbourne
Carlton H. 3

Victoria, Australia

Prof. J. N, Berrettoni
Western Reserve University
Cleveland, Chio

fr. P, M. Blunk

Quality Evaluation Laboratory
J. 3, Naval Magazine

Port Chicagon, California

Mr, Miltor. N. Bradiey
Box 68

2L81 Davidson Ave.
New York, M., Y.

Prof. Russell Bradt
Dept. of Mathematics
University of Kansas
lawrence, Kansas

B
S

k2

]

Prof. Irving W. Burr
Dept. of Mathematics
Purdue Universitcy
Lafaystte, Indiana

Prof. Edward P, Coleman
Engineering Dept.
University of Califcrnia
Los Angeles 2L, California

Dr. Louis Court

Division 17

National Bureaun ouf Standards
Tashington 25, D. C.

Mrs. J. Henley Crosland
Director cf Libraries
Georgia Inst. of Technology
Atlanta, Ga.

Mr. H. ¥. Dodge
Bell Telephone Labs., Inc.
L63 West Straet
New York, N. Y.

Prof. Acheson J. Duncan
ochool of Business

The Johns Hopkins University
Baltimore 18, id.

Dr. Benjamin Epstein
Dert. of Mazthematics
Wayne University
Detroit, Michigan

Dr. George E. Forsythe
National Bureau of Standards
Inst. for Numerical Analysis
University of Califomnia

LO5 Hilpard Ave.

los Angeles 2u, California

Vr. S. Gaspar

e 8 No @ T, Ss
Pasadena Annex

125 S. Grand Ave.
Pasadena, California

|

4



P e

Mr. Bernard P. Geldsmith

Quality Control Engineer

Raytheon Mfg, Co.

55 Chapel St.

Newton 58, Mass. 1

Prof. Eugene L. Grant

Civil Engineering Dept.

Stanford University

Stanford, California 1

Mr. Brent C. Jacob, Jr.
Supervisor of Quality Inspa2ction
Chrysler Corp.

Detroit 31, Michigan 1

Mir. Calvin J. Kirchen

Statistical Quality Control Analyst
AF Plant Representative

Central Air Procurement Division
Kaiser Mfg. Corp.

7illow Run, Michigan 1

Mr., Vincent Kwasveski
161k Porter St.
Philadelphia L5, Pa, 1

Mr, Neil M. leary

Chemical Corp. Office

c/o General Tire & Rubber Co.
Chambers Ave,

Jeannette, Pa,

W)

Prof. Sebastian Tittauer

Dept. of Industrial Engineering
Columbia University

New York, N.Y. 1

Dr., William G. Madow

Dept. of Mathematics

University of Illinois

Urbana, Illinois 1

Dean Faul E. Mohn

School of Engineering

The University of Buffalo
Buffalo, N, Y, 1

Mr. L, B. Morris

Q. E. Laboratory

U, S. M. A. D.

Bangor, Washington 1

-Vi-

Prof. E, G. 0Olds

Dept. of Mathematics

Carregie Institute of Technology
Pittsburgh, Pa.

Mr. John J. Riordan

Chief, Quality Analysis Office
Wright-Patterson Air Fcrce Base
Dayton, Ohio

Dr. Harry G. Romig

351 Alma Real Dr.

Pscific Palisades, Calif,
Prof. Norman Rudy
Statistics Dept.
Sacramento State College
Sacramenvo, California

Prof. Hanry Scheffe
Statistical Laboratory
University of California
Berkeley 4, California

Mr, R. H. Shaw
J. S. Naval Ordnance Plant
Indianapolis, Indiana

Prof. Seymour Sherman

Moore School of Electrical Eng.
University of Pennsylvania
Philadelphia L, Penna,

Mr. Walter Shewhart
Bell Telephone labs., Inc.
Murray Hill, New Jersey

Prof. Herbert Solomon
Teachers College
Columbia University
New York 27, N. Y.

lir, t!. L. Springer
U. S. Naval Crdnance Plant
Indianapclie, Indlana

Mr. Arthur Stein
Ordnance Ammunition Center
Joliet, Illinois

(3

|



Dr. Dan Teichroew

Numerical Analysis Research

Los Hilgard

Ios Angeles 2L, California 1

Miss Blizabeth Vaughan
2225 7th St.
Bremerton, Washington 1

Prof. W. Allen Wallis
Committee on Statistics
University of Chicago
Chicago 37, Illinois

[

Mr. Joseph Weinstein
BEvans Signal Laboratory
Belmar, New Jersey 1

Mr. Silas Williams, Jr.

Standards Branch

Frocurement Divisioun

U. S. Army AC/S GL

TWashington 25, D. C. L

frof. M. A. Woodbury

Logisticas Resezrcn Project

George Washington University

707 - 22nd St.,

Washington 7, D. C, 1l

#dditional copies for project
leader and assistants, office
file, and reserve for future
requirements 70

—-yii-



[ S . : > SR VRN R ST

Because of our limited 'supply, you are requested to return this copy WHEN IT HAS SERVED

Y_OUR PURPOSE so that it may be made available to other requesters, Your conperation
| will be appreciated,

—e ——

NOTICE: WHER GOVERNMENT CR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS

NO RESPONSIBILITY, NOR ANY GBLIGATION WHATSOEVER; AND THE FACT THAT THE
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE

SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURY
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETC.

Reproduced by

| DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHiO

X WO

"4

frmed Services Technical Information Agenc

i

~

—— s o | Ay

o

N R - NPUere




	0002
	0003
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051

